Numerical Solutions to Partial Differential Equations

Elliptic Equations
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(x,y) + a?(r- V) = f(x.y)

Poisson equation
dx?

Some problems involving this type of equations,
steady-state distribution of heat in a plane region

two-dimensional steady-state problems involving incompressible fluids.

Laplace’s equation flx,y) =0
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Laplace equation is used to find steady state distribution of temperature
In a plane region.
Dirichlet boundary conditions,

u(x,y) = g(x.v)

for all (x,y) on S, the boundary of the region R.
VoA

(x, v): Temperature is
held constant
at g(x, v) degrees
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Parabolic Equations

cpp s . u 3%u
diffusion equation —(x r) — o’

ar " gz =0

The physical problem considered here concerns the flow of heat along a rod

of length / which has a uniform temperature within each cross-sectional

element. This requires the rod to be perfectly insulated on its lateral surface.
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Initial condition,

u(x,0) = f(x)



Boundary Conditions,

if the ends are held at constant temperatures U; and U,
w(0,r)=U; and u(l.t)=U,

I, instead, the rod is insulated so that no heat flows through the ends,
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Hyperbolic Equations

Suppose an elastic string of length [ is stretched between two supports at

the same horizontal level. If the string is set to vibrate in a vertical plane,

the vertical displacement u(x.t) of a point x at time  satisfies the partial

differential equation
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forO0<=x <[ and 0 <t

The above equation is called the wave equation.

u(x, 1) A

TN .

~— i x, fixed time ¢

Initial conditions,

o1
u(x.0) = f(x) and 3—:(1.0) —=g(x), for0=x=<I



Boundary conditions,
[f the endpoints are fixed,

u(0.1) =0 u(l,r) =0

Vibrating beam with one or both ends clamped is the other physical

problem involving hyperbolic partial differential equation.

Finite-Difference Method

The first step in the numerical solving of a partial differential equation on

a domain is the selection of a grid. Then, the governing equation must be

discretized on the mesh points.

Figure shows the mesh points on a rectangular domain. The domain has
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been divided Into n and m parts in x and y directions, respectively. Step

sizes in x and y directions are,
h = (b—a)/n k =(d-—c)/m

Now, we must discretize equations on the grid points. In fact, it is

necessary to approximate derivatives on each mesh point.



Using the Taylor expansion of u(x) about x;, we have,
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u(x) = u(x;) + PW (Xi )(X Xi)+ PV (%) 5 T (1)

il;(xi)(x_)(i)g + 84[: (Xi)(x_xi)4 +...
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So,

ou o°u h?

u(Xi+1) = u(Xi) +8_X(Xi )h +$(Xi )?4—
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ﬁ(xi) ; + ~ (xi)ﬁ+...

Computing the first derivative, we have,
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We can rewrite the above equation as,
8—U(Xi ) _ LI(Xi+1) B u(Xi) -|-O(h)
OX h

O(h) represents the remaining terms including higher order derivatives.

Neglecting this terms, we have,

%(Xi ) _ U(Xi+1)h_ U(Xi)




This is called forward difference approximation for the first derivative.
The omitted terms (O(h)) form the error of this approximation and is
called truncation error. The error is of the order of the grid size, h.

In a similar fashion, we can use equation (1) to compute u(X;_, ),

ou o°u h*
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We can rewrite the above equation as,

ou
OX

( i): U(Xi)_hu(xi_l)_l_o(h)



So, the first derivative can be approximated as,

%(Xi ) _ u(x;) _hu(xi—l)

This is the backward difference approximation for the first derivative.
The truncation error is of the first order.

Central difference approximation for the first derivative can be

obtained by subtracting equations (2) and (3),

ou (X)) —u(Xy) 2
8_X(Xi)_ o +0O(h°)

By omitting the terms including higher order derivatives, o(hz) ,

%(Xi ) == (Xi+1)2_hu (Xis)




In central approximation, the truncation error is of the second order,
o(hz) . S0, this approximation is more accurate rather than forward and

Backward approximations.
In a similar fashion, second derivative can be approximated by adding
equations (2) and (3),

%(Xi ) u(x;,,) _ZE])?)+ u(x; )

+0(h?)

By omitting the terms including higher order derivatives, o(hZ) ,

o°u U(Xi+1)_2(xi)+u(xi—1)
o i) = X
The above equation represents the central difference approximation for

the second derivative.



Solving Elliptic Partial Differential Equations

Example

Determine the steady-state heat distribution in a thin square metal plate

with dimensions 0.5 m by 0.5 m using n = m = 4. Two adjacent

boundaries are held at 0°C, and the heat on the other boundaries

increases linearly from 0°C at one corner to 100°C where the sides

meet.

Solution
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for(x,y)intheset R={(x,y) [0 <=x <05 0<y <05}
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The boundary conditions are

u(0,y) =0, wu(x,0) =0, wu(x,0.5) = 200x, and u(0.5,y) = 200y.

[f n = m = 4, the problem has the grid given in the figure,
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u(0,v) =0

u(x, 0.5) = 200x

1(0.5, v) = 200y

]

0.5



Laplace equation can be discretized at node (i,j) as,

Uipgj=2Uij+Uigj  Uija—2Ui5+ Uiz,
2 2 o
(Ax) (Ay)
AX = Ay. So,
_ui+1,j ullj+4ulj_ui,j—|—l l“Il,j—lzo

The above equation is valid for each mesh point. Applying this equation

for node P, results in,
—u, —0+4u, -200(0.125)-u, =0
We can rewrite the above equation as,

4u,—U, —U, =25



In a similar fashion, Laplace equation is applied at each mesh point. So,

we have a system of equations as,

4 -1 0 =1 0 0 0 0 01|y )5
-1 4 -1 0 -1 0 0 0 01]]u 50
0 -1 4 0 0 -1 0 0 0|y 150
-1 0 0 4 -1 0 -1 0 0]]u, 0
0 -1 0 -1 4 -1 0 -1 0 |jus|=| 0
00 -1 0 -1 4 0 0 =11/ ug 50
00 0 -1 0 0 4 -1 0j]u, 0
00 0 0 -1 0 -1 4 =1 []u, 0
000 0 0= 0 =1 4|yl [ 5]

The coefficient matrix is a positive definite matrix.



The values of Uy, U,,...,Ug, found by applying the Gauss-Seidel method

to this matrix, are given in Table 12.1.

Table 12.1
; Choice of Iterative Method
i
| 1975 For large systems, an iterative method should be
), 3750 used—specifically. the SOR method. Decomposing
3 36.25 - :
A 1750 the coefficient matrix A as,
5 25.00 A=D-L-U
6 37.50
7 6.5 The matrix for the Jacobi method can be written as,
8 12.50 B=D'(L+U)
9 [8.75




