Numerical Solutions to Partial Differential Equations

Elliptic Equations

Poisson equation $\frac{\partial^{2} u}{\partial x^{2}}(x, y)+\frac{\partial^{2} u}{\partial y^{2}}(x, y)=f(x, y)$
Some problems involving this type of equations, steady-state distribution of heat in a plane region two-dimensional steady-state problems involving incompressible fluids.

Laplace's equation

$$
\begin{gathered}
f(x, y) \equiv 0 \\
\frac{\partial^{2} u}{\partial x^{2}}(x, y)+\frac{\partial^{2} u}{\partial y^{2}}(x, y)=0
\end{gathered}
$$

Laplace equation is used to find steady state distribution of temperature in a plane region.

Dirichlet boundary conditions,

$$
u(x, y)=g(x, y)
$$

for all (x, y) on S, the boundary of the region R.

Parabolic Equations

$$
\text { diffusion equation } \frac{\partial u}{\partial t}(x, t)-\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}(x, t)=0
$$

The physical problem considered here concerns the flow of heat along a rod
of length l which has a uniform temperature within each cross-sectional
element. This requires the rod to be perfectly insulated on its lateral surface.

Initial condition,

$$
u(x, 0)=f(x)
$$

Boundary Conditions,

if the ends are held at constant temperatures U_{1} and U_{2},

$$
u(0, t)=U_{1} \quad \text { and } \quad u(l, t)=U_{2}
$$

If, instead, the rod is insulated so that no heat flows through the ends,

$$
\frac{\partial u}{\partial x}(0, t)=0 \quad \text { and } \quad \frac{\partial u}{\partial x}(l, t)=0
$$

Hyperbolic Equations

Suppose an elastic string of length l is stretched between two supports at the same horizontal level. If the string is set to vibrate in a vertical plane, the vertical displacement $u(x, t)$ of a point x at time t satisfies the partial differential equation

$$
\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}(x, t)-\frac{\partial^{2} u}{\partial t^{2}}(x, t)=0, \quad \text { for } 0<x<l \quad \text { and } \quad 0<t
$$

The above equation is called the wave equation.

Initial conditions,

$$
u(x, 0)=f(x) \quad \text { and } \quad \frac{\partial u}{\partial t}(x, 0)=g(x), \quad \text { for } 0 \leq x \leq l
$$

Boundary conditions,
If the endpoints are fixed,

$$
u(0, t)=0 \quad u(l, t)=0
$$

Vibrating beam with one or both ends clamped is the other physical problem involving hyperbolic partial differential equation.

Finite-Difference Method

The first step in the numerical solving of a partial differential equation on a domain is the selection of a grid. Then, the governing equation must be discretized on the mesh points.

Figure shows the mesh points on a rectangular domain. The domain has

been divided into n and m parts in x and y directions, respectively. Step sizes in x and y directions are,
$h=(b-a) / n \quad k=(d-c) / m$
Now, we must discretize equations on the grid points. In fact, it is necessary to approximate derivatives on each mesh point.

Using the Taylor expansion of $\mathrm{u}(\mathrm{x})$ about x_{i}, we have,

$$
\begin{align*}
\mathrm{u}(\mathrm{x})= & \mathrm{u}\left(\mathrm{x}_{\mathrm{i}}\right)+\frac{\partial \mathrm{u}}{\partial \mathrm{x}}\left(\mathrm{x}_{\mathrm{i}}\right)\left(\mathrm{x}-\mathrm{x}_{\mathrm{i}}\right)+\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}\left(\mathrm{x}_{\mathrm{i}}\right) \frac{\left(\mathrm{x}-\mathrm{x}_{\mathrm{i}}\right)^{2}}{2}+ \\
& \frac{\partial^{3} \mathrm{u}}{\partial \mathrm{x}^{3}}\left(\mathrm{x}_{\mathrm{i}}\right) \frac{\left(\mathrm{x}-\mathrm{x}_{\mathrm{i}}\right)^{3}}{6}+\frac{\partial^{4} \mathrm{u}}{\partial \mathrm{x}^{4}}\left(\mathrm{x}_{\mathrm{i}}\right) \frac{\left(\mathrm{x}-\mathrm{x}_{\mathrm{i}}\right)^{4}}{24}+\ldots \tag{1}
\end{align*}
$$

So,

$$
\begin{align*}
u\left(x_{i+1}\right)= & u\left(x_{i}\right)+\frac{\partial u}{\partial x}\left(x_{i}\right) h+\frac{\partial^{2} u}{\partial x^{2}}\left(x_{i}\right) \frac{h^{2}}{2}+ \\
& \frac{\partial^{3} u}{\partial x^{3}}\left(x_{i}\right) \frac{h^{3}}{6}+\frac{\partial^{4} u}{\partial x^{4}}\left(x_{i}\right) \frac{h^{4}}{24}+\ldots \tag{2}
\end{align*}
$$

Computing the first derivative, we have,

$$
\begin{array}{r}
\frac{\partial u}{\partial x}\left(x_{i}\right)=\frac{u\left(x_{i+1}\right)-u\left(x_{i}\right)}{h}-\frac{\partial^{2} u}{\partial x^{2}}\left(x_{i}\right) \frac{h}{2}- \\
\frac{\partial^{3} u}{\partial x^{3}}\left(x_{i}\right) \frac{h^{2}}{6}-\frac{\partial^{4} u}{\partial x^{4}}\left(x_{i}\right) \frac{h^{3}}{24}-\ldots
\end{array}
$$

We can rewrite the above equation as,

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{x}}\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{\mathrm{u}\left(\mathrm{x}_{\mathrm{i}+1}\right)-\mathrm{u}\left(\mathrm{x}_{\mathrm{i}}\right)}{\mathrm{h}}+\mathrm{O}(\mathrm{~h})
$$

$O(h)$ represents the remaining terms including higher order derivatives.
Neglecting this terms, we have,

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{x}}\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{\mathrm{u}\left(\mathrm{x}_{\mathrm{i}+1}\right)-\mathrm{u}\left(\mathrm{x}_{\mathrm{i}}\right)}{\mathrm{h}}
$$

This is called forward difference approximation for the first derivative. The omitted terms $(O(h))$ form the error of this approximation and is called truncation error. The error is of the order of the grid size, h. In a similar fashion, we can use equation (1) to compute $u\left(x_{i-1}\right)$,

$$
\begin{align*}
u\left(x_{i-1}\right)= & u\left(x_{i}\right)-\frac{\partial u}{\partial x}\left(x_{i}\right) h+\frac{\partial^{2} u}{\partial x^{2}}\left(x_{i}\right) \frac{h^{2}}{2}- \\
& \frac{\partial^{3} u}{\partial x^{3}}\left(x_{i}\right) \frac{h^{3}}{6}+\frac{\partial^{4} u}{\partial x^{4}}\left(x_{i}\right) \frac{h^{4}}{24}+\ldots \tag{3}
\end{align*}
$$

We can rewrite the above equation as,

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{x}}\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{\mathrm{u}\left(\mathrm{x}_{\mathrm{i}}\right)-\mathrm{u}\left(\mathrm{x}_{\mathrm{i}-1}\right)}{\mathrm{h}}+\mathrm{O}(\mathrm{~h})
$$

So, the first derivative can be approximated as,

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{x}}\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{\mathrm{u}\left(\mathrm{x}_{\mathrm{i}}\right)-\mathrm{u}\left(\mathrm{x}_{\mathrm{i}-1}\right)}{\mathrm{h}}
$$

This is the backward difference approximation for the first derivative.
The truncation error is of the first order.
Central difference approximation for the first derivative can be obtained by subtracting equations (2) and (3),
$\frac{\partial \mathrm{u}}{\partial \mathrm{x}}\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{\mathrm{u}\left(\mathrm{x}_{\mathrm{i}+1}\right)-\mathrm{u}\left(\mathrm{x}_{\mathrm{i}-1}\right)}{2 \mathrm{~h}}+\mathrm{O}\left(\mathrm{h}^{2}\right)$
By omitting the terms including higher order derivatives, $O\left(h^{2}\right)$,
$\frac{\partial \mathrm{u}}{\partial \mathrm{x}}\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{\mathrm{u}\left(\mathrm{x}_{\mathrm{i}+1}\right)-\mathrm{u}\left(\mathrm{x}_{\mathrm{i}-1}\right)}{2 \mathrm{~h}}$

In central approximation, the truncation error is of the second order, $O\left(h^{2}\right)$. So, this approximation is more accurate rather than forward and Backward approximations.

In a similar fashion, second derivative can be approximated by adding equations (2) and (3),

$$
\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{\mathrm{u}\left(\mathrm{x}_{\mathrm{i}+1}\right)-2\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{u}\left(\mathrm{x}_{\mathrm{i}-1}\right)}{\mathrm{h}^{2}}+\mathrm{O}\left(\mathrm{~h}^{2}\right)
$$

By omitting the terms including higher order derivatives, $O\left(h^{2}\right)$,

$$
\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{\mathrm{u}\left(\mathrm{x}_{\mathrm{i}+1}\right)-2\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{u}\left(\mathrm{x}_{\mathrm{i}-1}\right)}{\mathrm{h}^{2}}
$$

The above equation represents the central difference approximation for the second derivative.

Solving Elliptic Partial Differential Equations

Example

Determine the steady-state heat distribution in a thin square metal plate with dimensions 0.5 m by 0.5 m using $n=m=4$. Two adjacent boundaries are held at $0^{\circ} \mathrm{C}$, and the heat on the other boundaries increases linearly from $0^{\circ} \mathrm{C}$ at one corner to $100^{\circ} \mathrm{C}$ where the sides meet.

Solution

$$
\frac{\partial^{2} u}{\partial x^{2}}(x, y)+\frac{\partial^{2} u}{\partial y^{2}}(x, y)=0
$$

for (x, y) in the set $R=\{(x, y) \mid 0<x<0.5,0<y<0.5\}$.

The boundary conditions are
$u(0, y)=0, u(x, 0)=0, u(x, 0.5)=200 x$, and $u(0.5, y)=200 y$.
If $n=m=4$, the problem has the grid given in the figure,

Laplace equation can be discretized at node (i, j) as,

$$
\begin{aligned}
& \frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{(\Delta x)^{2}}+\frac{u_{i, j+1}-2 u_{i, j}+u_{i, j-1}}{(\Delta y)^{2}}=0 \\
& \Delta x=\Delta y . \text { So, } \\
& -u_{i+1, j}-u_{i-1, j}+4 u_{i, j}-u_{i, j+1}-u_{i, j-1}=0
\end{aligned}
$$

The above equation is valid for each mesh point. Applying this equation for node P_{1} results in,

$$
-\mathrm{u}_{2}-0+4 \mathrm{u}_{1}-200(0.125)-\mathrm{u}_{4}=0
$$

We can rewrite the above equation as,

$$
4 u_{1}-u_{2}-u_{4}=25
$$

In a similar fashion, Laplace equation is applied at each mesh point. So, we have a system of equations as,

$$
\left[\begin{array}{rrrrrrrrr}
4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 4 & 0 & 0 & -1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 4 & -1 & 0 & -1 & 0 & 0 \\
0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & -1 & 4 & 0 & 0 & -1 \\
0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
\mathbf{u}_{1} \\
\mathrm{u}_{2} \\
\mathrm{u}_{3} \\
\mathrm{u}_{4} \\
\mathrm{u}_{5} \\
\mathrm{u}_{6} \\
\mathrm{u}_{7} \\
\mathrm{u}_{8} \\
\mathrm{u}_{9}
\end{array}\right]=\left[\begin{array}{r}
25 \\
50 \\
150 \\
0 \\
0 \\
50 \\
0 \\
0 \\
25
\end{array}\right]
$$

The coefficient matrix is a positive definite matrix.

The values of $u_{1}, u_{2}, \ldots, u_{9}$, found by applying the Gauss-Seidel method to this matrix, are given in Table 12.1.

Table 12.1

i	u_{i}
1	18.75
2	37.50
3	56.25
4	12.50
5	25.00
6	37.50
7	6.25
8	12.50
9	18.75

Choice of Iterative Method

For large systems, an iterative method should be used-specifically, the SOR method. Decomposing the coefficient matrix A as,

$$
A=D-L-U
$$

The matrix for the Jacobi method can be written as,

$$
B=D^{-1}(L+U)
$$

